University Medical Center of Princeton Plainsboro, NJ

Technical Report Two

Building and Plant Energy Analysis Report

Prepared by:Timothy BerteottiPrepared for:Dr. Stephen TreadoDate:October 19, 2011

Table of Contents

Executive Summary	,
Mechanical System Overview	;
Design Load Estimate	
Design Temperatures4	ŀ
Internal Loads4	ŀ
Construction Values	;
Load Schedule5	;
System Assumptions	5
Results Analysis	
Adjustment of Syska Hennessy Results6	5
Comparison to simplified model	1
Concluding Remarks)
Energy Analysis)
Emissions Analysis11	

Executive Summary

The purpose of this report is to show and explain the results of a block load analysis performed on the University Medical Center of Princeton bed tower. The analysis included creating a block heating and cooling model in Tran Trace700 and completing energy consumption and emissions calculations.

To create the block model, the construction documents of the medical center were used to gather the reauired data. To simplify the model, some repetitive spaces (ie. patient rooms) were grouped together into a single larger space. It was determined that this method provided a reasonable total load when compared to the detailed room by room model results created by Syska Hennessy.

From this block model the operating costs and emissions were calculated. Using utility rates from PSE&G, the annual cost to operate the building is approximately $1.11 \text{ million or } 5.51/\text{ft}^2$. To calculate the emissions, factors for CO₂, NO_x, SO_x, PM10, and CO_{2e} were taken from National Renewable Energy Laboratory. The annual CO_{2e} is estimated at 257 lb/ft².

The block model created is a reasonable evaluation of building loads. The Trace700 model provided a good estimate of the energy consumption when compared to the detailed model. The annual operating cost and emissions are therefore reasonable estimates. The details of all of the assumptions and results are found within this report.

Mechanical System Overview

The University Medical Center of Princeton has a large multi zone mechanical system to provide the required cooling and ventilation air for each type of space. There are 11 air handling units within the scope of this report (17 total for the building); eight of these units are atop the roof of the bed tower, while the other three are placed in the basement. The six roof top units supply 100% outside air and each is connected to its own heat recovery unit.

However, each floor is not serviced by its own air handler. The basement, first floor and lobby are supplied by the three basement units. The remainder of the building is separated into sectors. Each sector is supplied from its own air handler via a vertical supply shaft. See the Figure 1 so see how the sectors correspond to the building.

Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Roof
							6th Floor
							5th Floor
							4th Floor
							3rd Floor
Lobby							2nd Floor
Imaging De	partment						<u>1st Flo</u> or
Basement							Basement

Figure 1. Sector Layout Diagram

Design Sectors and Supply Air by AHU						
Air						
Handler	Sector	Supply Air (CFM)				
AHU -1	Lobby	60,000				
AHU -2	Imaging Department	35,000				
AHU -4	Basement	33,000				
AHU -7	Sector 1	46,000				
AHU -8	Sector 2	50,000				
AHU -9	Sector 3	35,000				
AHU -10	Sector 4	42,000				
AHU -11	Sector 5	50,000				
AHU -12	Sector 6	30,000				
AHU -13	Sector 7	30,000				

The following table describes the designed sector and supply air for each air handler.

Table 1. Designed Sectors and Supply Air

The hot and chilled water used by the air handlers is supplied by a central utility plant located next to the medical center. Steam provided from the utility plant is reduced from 120psi to 15psi on the sixth floor and used to generate hot water. The chilled water is used as supplied at 50.5 degrees Fahrenheit.

Design Load Estimation

The design load loads have been estimated using Trane Trace 700. Because of the size of the building, spaces of similar type were grouped together into a single larger space. This created an energy model with fewer "rooms" while still modeling the total area. To simplify the model further, the building was not broken down into sectors (as done by Syska Hennessy) but rather into individual floors. Table 2 lists a sample of the design assumptions used for these calculations.

Design Temperatures

The design temperatures were taken from ASHRAE. The interior design temperature is the ASHRAE default given in Trace700 and was used for the entire building. The exterior temperatures are the 0.4% and 99.6% design temperatures for Newark, NJ. Newark is the closest city to Plainsboro with ASHRAE data.

Internal Loads

The University Medical Center of Princeton has a variety of rooms. These rooms have very different lighting, and ventilation requirements as well as people densities. A room or two of each type was analyzed for lighting and people density. If the populations of the space could not be determined from the architectural drawings, values from ASHRAE Standard 62.1 Table 6-1 were used. The internal miscellaneous loads were estimated base on assumed equipment. These loads were then used for that room type throughout the building. A sample of rooms created can be seen in Appendix C.

Sample of Design Assumptions					
Interior Design Temp	Summer	72.3 °F			
	Winter	72.0 °F			
Exterior Design	Summer (0.4%)	93.4 °F			
Тетр	Winter (99.6%)	10.3 °F			
	Patient Room	0.9 Watt/ft ²			
	Office/Conference	1.1 Watt/ft ²			
Internal Load	Treatment Room	1.5 Watt/ft ²			
0	Lobby/Corridor	0.9 Watt/ft ²			
	Others	1.2 Watt/ft ²			
	Patient Room	3 per room			
	Office	2 per room			
Internal Load People	Conference	4 per room			
	Treatment Room	2 per room			
	Lobby/Corridor	0 per room			
	Patient Room	1.2 W/ft ²			
Internal Load Misc	Office/Conference	1.6 W/ft ²			
	Treatment Room	2.0 W/ft ²			
	Lobby/Corridor	0.0 W/ft ²			
	Wall U-value	0.084 Btu/h-ft ² -°F			
Construction	Roof U-value	0.214 Btu/h-ft ² -°F			
Construction	Window U-value	0.3 Btu/h-ft ² -°F			
	Shading Coeff	0.33			

Table 2. Sample of Design Assumptions

Construction Values

The construction values were either hand calculated or defined by Trace700. The wall construction values used are an average of the calculated Assembly U-Factors for the Brick on Metal Stud (0.039) and Glass Curtain Wall (0.13) found in Table 3 of Technical Report One. The roof and window U-values are Trace700 defaults for materials similar to those specified in the design documents.

Load Schedule

As is any hospital, the University Medical Center can be considered to be continuously operating. The schedules used for both heating and cooling are 100% at all times. This is because any and all of the spaces and equipment may in use simultaneously at any time during the day or night, weekday or weekend. The cooling season was considered to be January to December, while the heating season was set to an as needed basis.

System Assumptions

The system selected demonstrates the overall floor system. The system used for all floors is a constant volume non-mixing with terminal reheat, See Figure 2 below for a diagram. The only deviation from this type of system is the hot water heating only system used in the vestibules on the first floor. Because most floors had the same outdoor air requirements each floor was assumed to have only one system. An exception to this is the first floor which was broken into two systems (one for 31% OA and one for 100% OA). The design specifies for heat recovery units on air handlers 7-13; these were not modeled to demonstrate a worst case scenario.

Figure 2. Schematic of modeled system in Trace700

The diagram shows return air before the exhaust fan, the 100% outside air units have no return air and no exhaust fan. However, the space is exhausted by the heat recover units to create a piston system. To account for this in the model, the system is specified to provide 100% outside air at all times.

Results Analysis

The findings of the simplified model as well as the detailed model done by Syska Hennessey are comparable. The variation in assumptions for the design data, space grouping, as well as the system selection creates acceptable differences in the calculated values. These differences in calculations are broken down and explained in detail within this section.

Adjustment of Syska Results

To compare apples to apples, the results of the Syska Hennessy model needed to be modified to fit those of the simplified block model. This issue arose from the simplified model assuming only one system per floor, where Syska Hennessy broke each floor into the sectors as described in the mechanical summary. The sector results of each floor from the Syska model were recalculated to a weighted average based on the floor area that each sector covered. Table 3 and 4 show a sample of how this averaging was completed.

Syska Model Results By Sector for Level 4						
Sector	Area	Cooling ft ² /ton	Heating Btu/ft ²	Supply cfm/ft ²		
1	5135	132.53	59.38	1.10		
2	7332	134.70	58.30	1.09		
3	3796	76.09	103.08	1.96		
4	5926	138.12	57.27	1.07		
5	7366	94.48	81.42	1.55		
6	3991	147.36	54.56	1.01		
7	4159	142.22	56.98	1.04		
Total Area	37705					

Table 3. Syska Model Results from Trace700

Weighted Average Values for Level 4							
Sector	% Total Area	% TotalArea * Cooling ft²/ton	% Total Area * Heating Btu/ft ²	% Total Area * Supply cfm/ft ²			
1	0.14	18.05	8.09	0.15			
2	0.19	26.19	11.34	0.21			
3	0.10	7.66	10.38	0.20			
4	0.16	21.71	9.00	0.17			
5	0.20	18.46	15.91	0.30			
6	0.11	15.60	5.78	0.11			
7	0.11	15.69	6.29	0.11			
Totals	1.00	123.35	66.77	1.25			

Table 4. Area Weighted Values and Totals

This same procedure was conducted for all 7 levels of the medical center. Although Syska modeled areas outside the scope of this report (outside of the bed tower) all of the values were used. The reason this is based on an assumption that the spaces outside the scope are similar to those within. The final result is a weighted average therefore possible skews from the other data is considered negligible.

Comparison to Simplified Block Model

After adjusting the design data created by the detailed Syska Hennessy model, a comparison was made to the simplified block model. The results varied from floor to floor. Over all the modeled values on Floors two, three, and four were very close. The remaining floors were off plus or minus 20%. Table 5 shows a summary of the results. The modeled values colored red are plus 20% of Syska's values; the modeled values colored green are minus 20% of Syska's values.

Modeled vs. Syska Design Building Loads by Floor								
	Cooling ((ft²/tons)	Heating	(Btuh/ft²)	Total Supply (cfm/ft ²)		Ventilation Air (cfm/ft ²)	
Floor - % Outside Air	Modeled	Syska Designed	Modeled	Syska Designed	Modeled	Syska Designed	Modeled	Syska Designed
Level 0 -31% OA	330	253	19	25	0.85	1.11	0.26	0.36
Level 1 -33% OA	345	210	44	34	2.15	1	0.66	1
Level 1 -100% OA	89	146	78	54	1.79	1.24	1.79	1.24
Level 2 -100% OA	104	118	73	67	1.43	1.37	1.43	1.37
Level 3 -100% OA	131	137	69	63	1.24	1.17	1.24	1.17
Level 4 -100% OA	131	123	69	67	1.24	1.25	1.24	1.25
Level 5 -100%OA	131	141	69	57	1.24	1.06	1.24	1.06
Level 6 -100% OA	78	106	150	71	1.81	1.37	1.81	1.37

Table 5. Simplified Model vs. the Detailed Syska Model by floor

The differences on the basement level (level 0) are among the greatest. The assumptions for the basement level were therefore the most deviant of the Syska design model. Analyzing the assumptions between the two models shows that the internal load created by lighting is approximately 10% higher on the block model. This combined with the fact that the scope covers a smaller area creates a higher cooling load per unit area. This also explains that lower heating load; because of the higher internal heat generated by the lights less heat is required.

Analysis of the level 1 -33% outside air values shows that the differences are attributed to the lack of area modeled. The area of the block model is about half of the Syska model. The reason for such a small area is that the majority of this level system is outside the scope of this report. The major loads of this level are generated within the bed tower from the large two story glass concourse. This causes the two models to have similar loads. The block model is over a smaller area and therefore the loads per unit area are much larger.

The difference in the level 1-100% outside air results demonstrates the effects of assuming smaller loads in the same square footage. After analyzing this zone, it was found that the simplified model covers the same area, but the misc. and people internal loads are smaller. The lower misc. loads can be attributed to the assumptions of the equipment placed within the space. It is clear that these equipment loads were underestimated and further research would be needed to accurately model them.

Levels two through five are within the 20% error of the Syska model, and most are within 10%. The reason for this can be attributed to the fact there are not areas outside the bed tower on these levels. An exception to this is level two which has additional area outside of the scope. This space consists of the same type of rooms that are within the bed tower.

Level six shows similar symptoms of that of the level 1-100% outside air. This can again be attributed to the under estimation of the internal equipment loads.

Concluding Remarks

In conclusion, it can be said that the assumption that the space outside of the scope of the bed tower is similar to that of the bed tower only holds true for part of the building. The basement and level one have a large area outside of the bed tower creating an error in the block model. However that does not mean that the simplified model is incorrect. Because the Syska analysis is based on weighted averages, the values for the spaces outside of the scope could skew the weighted average. The differences in level 1-100% outside air and level six are most likely attributed to inaccurate equipment assumptions in the block model. The differences almost balance over the scope of the entire bed tower. This means the block model can be used to analyze operating costs and emissions of the bed tower.

Energy Analysis

Using the simplified block model, calculations of the building energy consumption and costs were performed. The details of this analysis are in this section.

The University Medical Center of Princeton is fortunate to have its own central utility plant. The details of the equipment used in this plant were not available in time for this report, therefore general assumptions of equipment efficiencies were used. These efficiencies are listed in Table 6 below. The amount of electricity and natural gas to produce the required steam and chilled water for the HVAC system were calculated with these equipment assumptions.

Equipment Information							
Chiller Information Boiler Information							
Brand:	Carrier		Brand:	Brunham			
Model:	19XRV		Model:	C series			
Nominal Tons:	1450		Output (MBh):	6695			
IPLV kW/ton:	0.35		Efficiency:	0.82			

Table 6. Equipment Efficiencies

The lighting densities used within the simplified model were used to estimate the annual lighting bills. Trace700 provided totaled value for the electricity consumption of the lights and misc. equipment loads. These values were then used to calculate the total electrical consumption.

The chiller and boiler were selected based on the estimated loads of the tower. The chiller is a Carrier water cooled centrifugal chiller. Two of this sized chiller would be needed to meet the estimated load. The boiler is a Brunham gas fired boiler. Three of these would be needed to meet the estimated demand.

The electricity consumption of the fans and motors were calculated based on the horse power of each unit. The horsepower was taken from the fan and motor schedules and converted to kilowatts. The estimated demands from Trace700 were analyzed and adjusted with the efficiencies of the equipment in table 6. Table 7 shows a summary of these values. Each value was then prorated for an entire year and evaluated at current utility rates for the area of Plainsboro, NJ.

Energy Consumption Summary						
Equipment	Fuel	Consumption	units			
Boiler	Nat. Gas	23	1000 ft3/hr			
Chiller	Electricity	743	kWh			
Fan/motor	Electricity	1569	kWh			
Lighting and Misc.	Electricty	552	kWh			

Table 7. Energy Consumption of the bed tower

The utility rates for the Plainsboro area were taken from the Public Service Electric and Gas Company (PSE&G). PSE&G is a major supplier of electricity and natural gas southern New Jersey. The totaled utility rates used are detailed below and were used to calculate the total yearly cost of each fuel type. The results of this calculation are summarized in table 8.

Gas:

Monthly Service Charge	\$100.94 per Month
Distribution Charge	\$0.2409 per therm for first therm
Distribution Charge	\$0.1966 per therm for remaining

Electric:

Monthly Service Charge Distribution Charge Peak off season Peak on season

\$397.13 per Month \$0.0263 per kWh \$9.152 per kW \$16.556 per kW

Energy Cost Summary						
		Total Cost per				
Equipment	Fuel	year				
Boiler	Nat. Gas	\$397,425.48				
Chiller	Electricity	\$279,006.16				
Fan/motor Electricity		\$583,761.20				
Lighting						
and Misc.	\$208,523.97					
Tota	\$1,468,716.82					

Table 8. Calculated Yearly Operating Cost

The cost to operate a large building is very high. When this cost is broken down, it comes to 5.51 per ft². It is expected that a hospital will have higher operating cost, however not this high. A possible reasons for this is an over estimation of the cooling load found in the load calculations. The high cooling load shown in the basement and level 1 may have skewed the number.

This cost is also in accurate in the fact that the central utility plant will also be acting as a cogeneration plant. This will help offset the peak electrical loads of the building and send electricity back into the grid during periods of low demand. Even though this will reduce the electricity cost, it will increase the natural gas cost as that is most likely to be the fuel used to power a steam or gas turbine generator.

Emissions Analysis

The University Medical Center of Princeton is located in the NPCC region. This region is part of the Eastern Interconnection. This interconnection services the eastern half of the United States as shown in Appendix A. The total emission factors for delivered electricity and on-site boiler were taken from the National Renewable Energy Laboratory and are shown in Appendix B. The values for CO2, NOx, SOX, PM10, and CO_{2e} were used to calculate the estimated emissions of the building. A summary of these calculated emissions is found in table 9 and table 10.

Electricity Emisions per Year (Eastern)						
Yearly Usage kWh	Emission	Emission Factor Ib/kWh	Thousand pounds of per year			
	<i>CO</i> ₂	1.64E+00	41,145.37			
	NOx	3.00E-03	75.27			
25,088,640	SO _x	8.57E-03	215.01			
	PM10	9.26E-05	2.32			
	Co2e	1.74E+00	43,654.23			

Table 9. Electricity Emission per year

Natural Gas Emisions per Year								
Yearly Usage 1000ft ³ /h	Emission	Emission Factor Ib/kWh	Thousand pounds of per year					
201,480	CO ₂	1.22E+02	24,580.56					
	NO _x	1.11E-01	22.36					
	SO _x	6.32E-04	0.13					
	PM10	8.40E-03	1.69					
	Co2e	1.23E+02	24,782.04					

Table 10. Natural Gas Emissions per year

Resources

- ASHRAE (2007). Handbook Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
- Deru and Torcellini. Source Energy and Emissions Factor for Energy Use in Buildings. Golden, Colorado: National Renewable Energy Laboratory.
- HOK/RMJM Hillier A Joint Venture. <u>Architectural Construction Documents</u>. HOK/RMJM Hillier. New York, NY and Princeton, NJ.
- Syska Hennessy. 2009. <u>MEP Construction Documents</u>. Syska Hennessy. New York, NY. 2009.
- Syska Hennessy. 2009. <u>TRANE Trace mechanical model</u>. Syska Hennessy. New York, NY. 2009.
- "Understanding_bill-business". PSE&G. web. 18 Oct. 2011. http://www.pseg.com/business/index.jsp.

Appendix A

Appendix B

Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00
CO2	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00
CH₄	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05
NOx	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03
SOx	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03
CO	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02

Table 3 Total Emission Factors for Delivered Electricity (Ib of pollutant per kWh of electricity)

		(lb of p	ollutant per ur	nit of fuel)							
	Commercial Boiler										
llutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG					
8	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 ga					

Table 8 Emission Factors for On-Site Combustion in a Commercial Boiler

	100010	100010	1000 1	Tooo gu	rooo ga	roos gai
CO2e	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04
CO2	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04
CH₄	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01
N ₂ O	3.68E-01	NDT	2.50E-03	1.18E-01	1.19E-01	9.77E-01
NOx	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01
SOx	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00
CO	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00
VOC	ND [†]	ND [†]	6.13E-03	3.63E-01	2.17E-01	3.80E-01
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	NDŤ	ND [†]
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	ND †	ND [†]
PM10	2.00E+00	ND [†]	8.40E-03	4.64E+00	1.88E+00	4.89E-01

 PM10
 2.00E+00
 ND[†]
 8.40E-03
 4.64E+00
 1.88E+00

 * from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)
 ** from the U.S. LCI data module: Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia. † no data available

Appendix C

Create R	Rooms - Sing	gle Worksl	heet									0	
Alternative Room des	e 1 cription Priv	ate Patient	Rms 1	8 North		•]					į	Apply Close
Templates	k				Length	Widt	h						
Room	Patient Room	n	•	Floor	4230	ft 1	ft						New Room
Internal	Patient Room	m	•	Roof (• 0	ft 0	ft						Сору
Airflow	Patient Roor	n	Ŧ	(Equals flo	nor							Delete
Tstat	Default		•	1.7-8									
Constr	9 Foot Const	truction	•	Vall - 1 Wall - 2	Length (ft) 257.39999 10.333 0	Height (ft) 9 9 9 9	Direction 0 90 0	% Gla 0 0	iss or Qty 1 0	Length (ft) 8.21 0	Height (it) 7 0 0	Window	
				Internal lo Peopl	ads e 36	People		Airl	lows Coolina v	ent 100	% Cla Airflo		
				Lighti	ng 1	W/sq ft	-		Heating	vent 100	% Htg Airfle		
				Misc I	oads 4320	W	•		VAV mini	mum	% Clg Airflo	w 💌	
<u>S</u> ingle S	Sheet	Boon	15	R	pofs	₩a	lls	ļr	nt Loads		Airflows	Ea	rtn/Floors

Create F	Rooms - Sing	le Worksheet								6	
Alternative Room des	e 1 cription Staff	Work Areas			-]					Apply <u>C</u> lose
Templates	L			Length	Widt	h					
Room	Office	•	Floor	2500	ft 1	ft					New Room
Internal	Office	•	Roof	• 0	ft 0	ft					Сору
Airflow	Office	٣	(Equals flo	or						Delete
Tstat	Default	*									Delete
Constr	9 Foot Constr	uction 💌	Wall Description	Length (ft)	Height (ft)	Direction	% Glass or Qty	Length (ft)	Height (ft)	Window	
				0	9	0		0	0		
			Internal k	oads			Airflows				
			Peopl	e 80	People	٣	Cooling v	ent 100	% Clg Airflor	w 💌	
			Lightir	ng 1.2	W/sq ft	*	Heating v	ent 100	% Htg Airflo	•	
			Misc I	oads 5660	W	•	VAV minir	rum	% Clg Airflo	w 💌	
Single	Sheet	<u>R</u> ooms	B	oofs	Wa	lls	Int Loads		Airflows	E	artn/Floors